Hybrid Forecasting Model Based Data Mining and Cuckoo Search: A Case Study of Wind Speed Time Series

نویسندگان

  • Xiangdong Xu
  • Xi Song
  • Qian Wang
  • Zhiyuan Liu
  • Jing Wang
  • Zhiru Li
چکیده

Wind energy has been part of the fastest growing renewable energy sources that is clean and pollution-free, which has been increasingly gaining global attention, and wind speed forecasting plays a vital role in the wind energy field, however, it has been proven to be a challenging task owing to the effect of various meteorological factors. This paper proposes a hybrid forecasting model, which can effectively make a preprocess for the original data and improve forecasting accuracy, the developed model applies cuckoo search(CS) algorithm to optimize the parameters of the wavelet neural network (WNN) model. The proposed hybrid method is subsequently examined on the wind farms of eastern China and the forecasting performance shows that the developed model is better than some traditional models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Method Based on Singular Spectrum Analysis, Firefly Algorithm, and BP Neural Network for Short-Term Wind Speed Forecasting

With increasing importance being attached to big data mining, analysis, and forecasting in the field of wind energy, how to select an optimization model to improve the forecasting accuracy of the wind speed time series is not only an extremely challenging problem, but also a problem of concern for economic forecasting. The artificial intelligence model is widely used in forecasting and data pro...

متن کامل

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

متن کامل

Wind Energy Potential Assessment and Forecasting Research Based on the Data Pre-Processing Technique and Swarm Intelligent Optimization Algorithms

Accurate quantification and characterization of a wind energy potential assessment and forecasting is significant to optimal wind farm design, evaluation and scheduling. However, wind energy potential assessment and forecasting remain difficult and challenging research topics at present. Traditional wind energy assessment and forecasting models usually ignore the problem of data pre-processing ...

متن کامل

Application of an Improved Neural Network Using Cuckoo Search Algorithm in Short-Term Electricity Price Forecasting under Competitive Power Markets

Accurate and effective electricity price forecasting is critical to market participants in order to make an appropriate risk management in competitive electricity markets. Market participants rely on price forecasts to decide on their bidding strategies, allocate assets and plan facility investments. However, due to its time variant behavior and non-linear and non-stationary nature, electricity...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016